Exploratory Discussion Meeting June 11th, 2020
Dan Lewis Foundation

11:00-4:00 EST

A meeting of the Dan Lewis Foundation for Brain Regeneration Research was held via Zoom Conference on Thursday, June 11th, 2020 from 11:00 a.m. to 4:00 p.m. EST. The primary purposes of this meeting were to promote collaboration between leading scientists in the area of cortical regeneration and to begin planning a research agenda to accomplish the mission of the Foundation. That mission—to identify new biomedical approaches that promote neural regeneration, axonal growth, and synaptogenesis to improve the lives of persons with moderate and severe traumatic brain injuries and their families—was affirmed by group consensus.


Invited scientists attending as presenters and/or discussants were David Margulies, M.D. Sudhir Agrawal, Ph.D., Mark Bear, Ph.D., Randall Carpenter, M.D., Adam Cohen, Ph.D., Graham Dempsey, Ph.D.,  Kevin Eggan, Ph.D., David Gerber, Ph.D.,  Alan Kopin, M.D., and Stephen Strittmatter, M.D., Ph.D.  David Margulies ably moderated this meeting, kept the agenda flowing, and allowed ample room for discussion after each of the thought- provoking presentations which are very briefly described below. 


Hal Lewis gave an overview of the causes, the biomechanical and the biochemical effects of brain injury, particularly moderate and severe brain injury. Hal also provided a synopsis of his son Dan’s story (which can also be accessed elsewhere on our site).


Mark Bear spoke about regulation of cortical synaptogenesis particularly in the visual cortex of infra-human study subjects.


Stephen Strittmatter’s presentation explored molecular restraints on axon plasticity and  neural repair;  and explained some of his lab’s findings regarding promotion of axonal growth and sprouting in the spinal cords of infra-human study subjects.


Kevin Eggan gave an overview of progress in induced pluripotent stem cells and the promise of CNS neuronal cultures. He also spoke about the plausibility of creating useful models for the study of TBI and response to potential pharmaceutical treatment of TBI.


Adam Cohen spoke about cutting-edge technologies in the biosciences with particular attention to optogenetic tools that provide new abilities to study cortex and cortical neurons.


Sudhir Agrawal presented an overview of strategies for using anti-sense oligoneucleotide (ASO) therapies targeted to the central nervous system. He also talked about how research labs and biomedical companies can and have worked efficiently together to develop curative pharmaceuticals for many neurological disorders, particularly those for which specific genetic targets can be identified.


Alan Kopin provided a case study that illustrated how genomic analysis can lead to “down regulation” of a specific gene that is implicated in the neurodevelopmental disorder of a 9 year old boy.


Following this set of presentations, group discussion focused on envisioning and planning a research agenda to find therapeutics to improve outcomes for individuals in the chronic phase of post-TBI recovery. It was generally agreed that a plausible research-based path forward could be formulated. This was a very exciting and forward looking meeting—a meeting in which the collaborative and enthusiastic atmosphere lent promise to reaching the Foundations desired outcomes.  We want to express our deep gratitude to each of these renowned and highly respected scientists who contributed to the success of this meeting. A second meeting of the Scientific Advisory Board of the Foundation, with additional invited participants, will be held during late July or the first part of August.


A man is holding a fish in his hand in front of a lake.
By Dan Lewis Foundation November 6, 2024
After a life-altering accident in October 2022, Devon Guffey’s story is about resilience and determination. His journey has been profiled in the summer 2023 issue of the Making Headway Newsletter: https://www.danlewisfoundation.org/devons-story . Hit by a drunk driver, Devon sustained severe brain and physical injuries, including axonal shearing, a traumatic frontal lobe injury, and facial fractures. Even after contracting meningitis while in a coma, Devon fought hard to survive – and today, his recovery continues to inspire us all. In late 2023, Devon worked as an assistant basketball coach at Blue River Valley, where he had once been a student. His love for sports and dedication to regaining his physical strength returned him to the gym, where his hard work paid off. Devon’s persistence earned him another job at the YMCA, guiding gym members and supporting facility upkeep. Through all the challenges—deafness in one ear, blindness in one eye, and a permanent loss of taste and smell—Devon perseveres. He recently regained his driving license, a significant milestone that symbolizes his increasing independence and cognitive and physical recovery. While each day may not show significant changes, Devon now sees his progress over time. Today, Devon speaks to groups about his journey, the dangers of drunk driving, and finding strength in adversity. His message is clear: recovery is a process, and sometimes, "can't" simply means "can't do it yet ." Every TBI is unique, and Devon’s story powerfully reminds us of the strength that comes from resilience and community. We are grateful to Devon for continuing to share his story and for his role in uplifting others facing difficult paths. His journey is a testament to the fact that we are stronger together. #BrainInjuryAwareness #DevonsJourney #Resilience #EndDrunkDriving #MakingHeadway
A close up of a brain with a lot of cells and a purple background.
By Dan Lewis Foundation | Summer 2024 July 10, 2024
Scientists worldwide are working to find ways to stimulate healing and functional recovery after severe brain injuries. This work is driven by the desperate needs of persons who have suffered brain damage. It is inspired by the knowledge that the information required to create new brain cells, cause these cells to interconnect, and stimulate new learning is contained in our genome. Now that we can readily generate stem cells from adult tissue, we have access to the genomic program that can control all of the intricate details of brain tissue formation. A number of different research themes are being pursued productively. These include: (1) enabling injured neurons to self-repair (“axonal repair”) 1,2 ; (2) replacing damaged tissue by increasing the growth of new neurons (“neurogenesis”) 3-5 ; (3) transplanting new brain cells that are derived from a person’s own stem cells (“autologous cellular repletion”) 6-8 ; (4) stimulating the re-wiring of new or surviving tissue by encouraging the formation of new connections (“synaptogenesis”) 9,10 ; and (5) augmenting the function of a damaged brain by the use of bio-computational prostheses (“brain-computer interfaces”) 11,12 ; We’ve explored these themes in previous newsletters. The goal of stimulating meaningful brain regeneration is now sufficiently plausible that a large-scale, well-funded campaign needs to be funded to bring meaningful new therapies to patients within the foreseeable future. Here, we suggest a high-level outline of the research themes for such a campaign. A ‘moon shot’ program towards brain regeneration would leverage cutting-edge technologies in stem cell research, gene therapy, synaptic plasticity, neuronal repair, and brain-computer interfaces (BCIs) to develop innovative treatments for brain injuries and neurodegenerative diseases. These treatments would target the restoration of lost brain functions and improvement in the quality of life for individuals affected by severe brain injuries. This research agenda aims to catalyze serious discussion about creating a federal program with funding, organizational resources, and expert governance to enable brain regeneration in our lifetimes. Major Themes For a Brain Regeneration “Moon Shot” Program 1: Promote the formation of new neurons 1.1 Stimulate the brain to create new neurons 1.2 Create new neurons from patient-derived induced pluripotent stem cells to be transplanted back into the patient. Create new glial cells to support neurogenesis. 2: Stimulate new synaptic formation 2.1 Develop drugs that enhance synaptic plasticity and promote the formation of new synaptic connections 3: Stimulate self-repair of damaged neurons 3.1 Develop drugs that de-repress neurons and, thereby, enable axonal regrowth 4: Develop brain-computer interfaces (BCIs) for brain-injured patients 4.1: Develop and test BCIs that enable the brain to control behaviors or external devices and, thereby, augment or replace impaired functions. 4.2: Develop and test BCIs that can accelerate the training of remapped brain tissue in persons with brain injuries to optimize functional recovery. 4.3: Combine BCIs with other strategies (e.g., cell repletion, synaptogenesis, and enhanced plasticity) to accelerate adaptation and functional improvement. The proposed research themes can underpin targeted research to stimulate meaningful brain regeneration, offering new hope for patients with brain injuries and neurodegenerative diseases. While the scientific challenges are profound, there has been sufficient progress to justify substantial investment in brain regeneration research. Any such large-scale program will require coordinated collaborations among academic and commercial partners, skillful governance and management, and a shared sense of profound commitment to the goal. The recent pace of advances in cell biology, stem cell technology, bio-computational interfaces, and genomically targeting medicines suggests that large-scale investment will yield meaningful clinical advances toward brain regeneration after injury. With robust funding and skilled leadership, this comprehensive research agenda has a realistic potential to transform scientific breakthroughs into tangible medical therapies, offering hope to millions affected by brain damage.
Share by: